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Abstract 
 

With increasing magnitude of computer network activity, the ability to monitor all 

network traffic is becoming strained.  The need to represent large amounts of data in 

smaller forms is essential to continued growth of network monitoring tools and network 

administrators’ capabilities.  Network monitoring captures many different measurements 

of the data flowing through the network.  This thesis introduces a new method of sending 

network traffic monitoring data that reduces the overall volume of data from the 

traditional method of packet capture.  By populating a matrix with specific data values in 

a sparse format, this experiment reduces the data using singular value decomposition 

(SVD) compression.  Matrices were populated using network monitoring datasets from 

1996 Information Exploration Shootout (IES). The data populated into the matrices was 

varied along time frame and data field to determine if the SVD compression algorithm 

reduced the quantity of original data values.  Results indicated that the quantity of data 

varies dependent on the volume of the data field chosen.  The matrix population method 

was based on port values to allow combining values within the matrix cells.  The results 

trended to a successful reduction of data if the time frame is increased significantly.  

However, increases in the time frame led to less distinction of the individual data values.  
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NETWORK MONITORING TRAFFIC COMPRESSION USING SINGULAR 

VALUE DECOMPOSITION 

 
I.  Introduction 

1.1. Background 

The world continues to become more and more connected with a growing number 

of portable devices connected to the internet.  It is not uncommon for an individual to 

own multiple computers or computing devices.  With this growing number of devises, 

computer networks are quickly growing large and more sophisticated.  It is estimated that 

the volume of computing devises on a typical network has increased 12 times over the 

past 12 years [16].  In the last two decades, organizations such as the United States 

military have gone from a handful of computers per unit of hundreds of personnel to 

practically one computer per person.     

The ability to monitor the security of these complex networks has become 

increasingly more difficult and often administrators do not notice attacks until it is too 

late [33].  Network administrators currently use a number of programs or tools to oversee 

their networks.  Most of these tools either generate or read existing network logs and 

streams of data [26].  These logs are then interpreted in a number of ways for the 

administrators.  Some tools display the raw data which can be searched or parsed based 

on queries for specific types of data or network packets [9, 23].  However, given the 

trends of increased traffic, the data these tools gather and search through are becoming 

too large to detect anomalies.  Given these facts, it is apparent that a new method of 

network monitoring is needed.   
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Current monitoring systems are not sophisticated enough to filter only malicious 

activities and often generate too many alerts of potential threats for an administrator to 

handle manually [7].  Network traffic compression can reduce cost in administrator time 

and resources needed by compressing large data volumes into smaller ones.  This 

research attempts to compress network data in such a way that when the data is needed, it 

still represents the same unique information as it did before it was compressed.   

The use of singular value decomposition (SVD) compression is originally comes 

from research in digital image compression [3, 31].  Digital images are effectively data 

values in matrix form [25].  If these images can be compressed without loss of image 

quality and still reduce the amount of data, could a sparsely filled matrix of network 

traffic data do the same for raw network data? 

1.2. Problem Statement 

 The size and scope of computer networks are continuously increasing.  The 

volume of data a network administrator manages increases by a factor of three every 

year, according to Gilder’s Law.  The amount of network traffic each device sends and 

receives can vary greatly depending on device type, purpose, and frequency of use.  

Network monitoring tools use various parts and elements of network traffic to monitor 

and identify potential malicious activity.  Each of these elements corresponds to a 

specific field or measurement of a network packet or network connection.  Fields can 

vary depending on the monitoring software.  Rarely is every data element needed to 

detect a specific type of attack or to perform a specific type of analysis [6].  A network 

monitoring tool only needs to analyze only specific elements of traffic data in order to 
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detect a certain type of attack, but the same tool will need to analyze different elements of 

traffic data in order to detect a different type of attack.  If this specific data could be 

reduced, then the storage and the transmission of network monitoring data would also be 

reduced.  The experiment conducted attempted to answer the following questions:  How 

much can network traffic data be reduced by using SVD before the data values change?  

Is the size of the reduced decomposed data less than the size of the original using SVD 

compression?   

1.3. Goals 

The first goal is to determine how much a matrix containing a particular element 

of network traffic can be reduced and still retain the same values of the original data.  

Using single elements of network monitoring traffic populated into a matrix should allow 

a reduction of at least 50% from original size of the matrix decompositions and still retain 

the same number of values in the same fields of the matrix.  This hypothesis is based on 

the principles of singular value decomposition [31].  The one of the decomposition 

matrices contains the singular values of the original matrix and allows the values to be 

ordered.  By ordering these values from greatest to least, it allows for the least important 

values to be dropped. Therefore eliminating least significant data reduces the original 

matrix.   

The second goal is to determine if the resulting maximum reduced 

decompositions from the original matrix contain less overall data values than the original 

dataset.  This is an indirect comparison.  The original quantity of data values is counted 

by multiplying the volume of packets by the number of fields used for each packet over 



4 

the measured time frame.  The compressed data consists of the number of non-zero 

values contained in the reduced decomposition matrices from SVD compression.  The 

non-zero values are used because of how sparse matrices can be stored and transmitted. 

1.4. Hypothesis 

Singular value decomposition compression was originally used as a form of 

image compression [3, 31].  Since images are just complex matrices that are interpreted 

visually, if an image’s data size can be reduced significantly, without much visual 

distortion, the same should be true for a standard matrix.  This leads to the hypothesis that 

a single matrix populated with a single field of data from network monitoring traffic can 

be reduced using SVD compression such that the amount of data is less than the amount 

used to create the original matrix.   

1.5. Scope 

This research addresses the need to develop a method of representing the vast 

pools of data gathered from networks in a structure that can be easily compressed to save 

system resources for either transport or storage. The research in this thesis is centered on 

the larger problem how to handle the amount of data generated and passed through a 

network.  The specific data that is used to monitor a computer network varies between 

network monitoring tools.  The scope of this thesis is to analyze the data packets 

measured from a simulated computer network dataset. This thesis focused on the 

individual fields and values of these network packets, in order to not restrict the research 

relevance to a specific network monitoring tool..  Maintaining the values during 

experimentation was priority to allow any monitoring tool to have access to the original 



5 

data.  This aspect aided in determining compression and overall reduction of values as a 

result of the SVD compression process.    

1.6. Assumptions and Limitations 

 The virtual environment where all calculations are preformed is MATLAB 

version 2012b.  An assumption is the calculations invoked for the singular value 

decomposition process are preformed correctly in the MATLAB environment.  During 

the compression algorithm, the program invokes the ‘svd( )’ command to decompose the 

original matrix into its separate decomposition parts.  The ‘eig( )’ function that produces 

the eigenvalues of a given matrix is also used in this experiment to evaluate the original 

matrices.  Given MATLAB’s reputation as an environment used for a multitude of 

research experiments in various academic fields, these assumptions are minimized for 

risk of miscalculation [5, 24]. 

 This research is limited to the network data collected in the Information 

Exploration Shootout.  This dataset is explained in detail in Chapter III.  The data set 

contains a record of network packets used to simulate computer network traffic.  The data 

used contains five datasets, each with thirteen specific element fields of data 

corresponding to an individual packet.  These datasets were collected in 1996, and the 

experiment system is limited to the data fields and thresholds of a network from that time.   

Modern and larger networks could create a larger variety of fields to be analyzed.  

However, resources available and time constraints of this experiment prevented the 

generation of newer network traffic data. 
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1.7. Methodology 

Current network monitoring tools collect specific data fields from the network to 

include: duration of connections, protocol type, destination service, packet size, direction 

of travel and several others [5, 10, 26].  The method introduced in this body of work 

selects the specific data fields from the provided datasets, and parses them into a fixed 

NxN matrix.  The cells of individual matrices contain the values of the data field chosen 

over the measured time frame.  After the matrix is populated for a time frame, a new 

matrix is created from the original using SVD compression.  The quantity of values from 

the resulting decomposition matrices is compared to the quantity of original data used to 

create the matrix.  Comparisons were made between the original matrices and the 

compressed matrices by a cell-by-cell comparison of values. These comparisons were in 

the calculated matrix to ensure data integrity is not lost during the compression process.  

1.8. Implications 

Data storage and transportation resources could potentially be reduced by using 

SVD compression of individual network data elements over time.  If shown to be 

beneficial, a network traffic compression algorithm would allow for a central repository 

of original data to be maintained and only the required data be transferred for analysis.  

The transfer would require less bandwidth from point to point and simple matrix math to 

reconstruct the original data at the destination.  A reduction in volume of data would 

facilitate the use of mobile devices in the support of network monitoring where system 

resources are limited in comparison to standard computer systems.   
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II. Literature Review 
 

The purpose of network monitoring is to maintain situational awareness of 

activities on a digital network.  Network administrators use numerous tools to determine 

what is connected to their network, and other tools to monitor how their network is 

behaving.  The current state of network monitoring relies on event logs and automated 

systems to maintain the network [20].  This reliance does not diminish the prevalent 

challenges of the volume of alerts being too numerous for manual analysis.  Any change 

to a network can create undesired affects resulting in false positives showing up on 

current monitoring tools.    

2.1. Network Monitoring Tools 

Most network traffic is normal and nonthreatening to the network.  However, 

discovering a small string of malicious packets among the potentially millions sent and 

received daily is equivalent to finding a needle in a haystack.  Manual sorting is arduous, 

time consuming, and prone to human error.  Intrusion detection systems (IDS) generate 

logs that capture information needed to identify malicious activity [15, 21, 26, 28].    

Intrusion detection systems allow a low number of trained administrators to monitor vast 

networks.  Despite the availability of IDS, the problem remains of sorting through these 

extensive security logs [15].  While the needs for an IDS can vary greatly depending on 

the purpose and scope of a network, the needs for an IDS focused on are real-time 

monitoring and attack pattern analysis.  



8 

2.1.1. Real – Time traffic monitoring 

The ability to track network traffic is the basis of network monitoring.  There are 

two ways of representing traffic across the network.  The first method is the use of 

individual packet data.  Capture tools like Wireshark [23] and NAM [9] show every bit of 

data from each individual packet as it is transferred across the network.  Large volumes 

of information are great for analysis of the data being sent and received.  However, this 

data requires proportionally large data storage to accommodate the volume of traffic on 

the network.   

The second method of network monitoring is the use of flows.  Flows are created 

by using a construct which combines the individual packets from the same sessions that 

summarize the communication between two IP addresses or ports over time [4].  Moving 

extensive amounts of data becomes less of a burden as network bandwidth has grown 

larger.  As a result of the growing volume of data, packet animation is used less often 

than flows for IDS [4, 9, 13].     

Network security is inherently time-sensitive.   The quicker an administrator or 

security analyst can react to a threat, the more likely a threat can be mitigated.  The goal 

of most analysis is to analyze data as soon after collection as possible.  Since not every 

network flow needs to be reviewed, a broad awareness allows analysts to perceive current 

activities.  In a real-time environment, noticing changes allows for quicker detection of a 

potential threat by an administrator.  System resources or personnel are then deployed to 

perform appropriate remedies to address the issue.   



9 

2.1.2. Attack Pattern Analysis 

Attack pattern analysis is instrumental to detect parallel coordinated attack vectors 

(PCAV) [6, 11, 19, 26].  A monitoring tool has many ways to represent PCAV so new 

attacks are quickly detected and enable network administrators to recognize and respond 

to those attacks.   Analyses of attack characteristics help determine the visual mechanism 

for representing the most popular internet attacks: DDoS attacks, worm attacks, or 

network scans. These attacks have one common characteristic, the one-to-many ratio 

between the attackers and the victims, whereas legitimate flows tend to have a one-to-one 

relationship.  Four parameters that have been identified as useful indicators of attacks 

occurring on networks are shown below. 

1. The source IP address and destination IP address in flow information are selected 

as parameters because they specify the attacker and the victim host. 

2. Destination port number is selected as a parameter. This value identifies the 

targeted service of an attack and verifies port scanning attacks. 

3. The average size of packets in a flow can be used as a parameter that gives some 

clues whether the flow is suspicious or not. Even when the packets have payloads, 

usually the length of packets is fixed. 

4. The use of transmission control protocol flags in the header portion of network 

packets and the protocol field in IP headers are another parameter.  These flags indicate 

the need for specific action of attention of the system. 

 
These parameters were instrumental in discovering a suitable dataset to perform this 

experiment.   
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2.2. Current Issues with Network Monitoring Tools 

Current monitoring systems are not sophisticated enough to detect all malicious 

activities and often generate many alerts for an administrator to process.  A vast quantity 

of alerts requires network administrators to manually sort through them [26].  The three 

most prominent issues facing network monitoring tools are the need for multiple tools, 

form and function, and scalability. 

2.2.1. Need for Multiple Tools 

 A limitation of the tools currently in use is that they rarely employ multiple data 

sources and often require a separate application to parse the security data before it can be 

graphed or otherwise manipulated.  Multiple applications can be inconvenient for the user 

and makes evaluating security events in a timely fashion difficult. Additional tools 

increase resource demands of the system by having multiple tools running simultaneously 

[29].  While these tools do accomplish their designed task, having multiple tools 

operating at the same time increases the requirement of base knowledge and skills on an 

administrator.   

2.2.2. Form and Function 

 Security tools are written either by people who are network security personnel and 

have limited knowledge of visualization theory and human computer interaction, or by 

individuals with expertise in the field visualization and data representation who are not 

experts in the field of computer security. As a result, most current tools suffer from a lack 

of domain knowledge in one of these areas [35].  An important goal for any future 
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security tool is to close this gap and create an application that is user-friendly, technically 

accurate, and effective from a security perspective. 

2.2.3. Scalability 

As technology increases and the ability to process larger amounts of data 

increases along with it, scalability continues to become an area of concern when 

monitoring networks.  However, sometimes the growth in data far exceeds the growth in 

computing power.  Also, different ways of aggregating data are used to interpret massive 

amounts of data, but are not without drawbacks [1, 13].  Effective use of aggregation 

largely depends on the skills of the administrator requesting the information. If the 

application merely provides the opportunity for users to aggregate fields as they desire, 

less experienced administrators perform data requests that overload the target system 

[30].  Aggregation assumes that the end-user knows what he or she is looking for; and the 

end-user knows how and when to apply criteria to reduce the size of the result set from a 

given data request.   

Visualization of network monitoring data is the most popular form of interpreting 

large amounts of data. Additionally, different techniques have been proposed for scaling 

up data interpretation in the form of visualizations [2,4,6,7,9,10,12,21,22,28,32].    

2.3. Visualizing the Data 

A technique for increasing an administrator’s network monitoring capability is the 

visualization of captured network log data [21].  Visually analyzing data helps network 

administrators perceive patterns, trends, structures, and exceptions in complex data 

sources [28] thus decreasing the time to manually review multiple log files.  Visualizing 
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log files allows network administrators to better recognize abnormal behavior by 

recognizing pattern differences at a glance.  Visualizations do not provide a total solution 

and can be altered by data received from other network management software.   

Information overload, counter intuitive interfaces, and lack of actionable information can 

influence the visualization of the data causing the administrator to make less than optimal 

decisions when interpreting the visualized data [6]. 

A brief overview of the general practice of visualization design and the 

development of visual tools is included in several works [22,28,32].  Each of these 

overviews describes a variation to the four basic steps. 

1. Input data is read in and stored in a standardized form. 

2. The stored data is transformed to symbols.  These symbols vary based on 

components of the data or how the data is interpreted.  

3. The symbols are displayed on the screen using the computing device’s rendering 

and display system.  

4. The administrator visually processes the visualization of the data with an 

understanding of the data in the data set.   

 
The administrator is then able to interact with the network according to what he or 

she perceives.  Steps 2-4 are subject to distortion of the data and lack of a direct 

connection between the data and the perceived understanding of the data.  The completed 

design of the visualization must take all of these components into account. 
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2.4. Visual Compression 

Visualization is becoming the most popular method of representing the great 

quantities of data [3,15,20,21,32].  Visualization is not the focus of this thesis.  However, 

research in this area lead to the concept of compressed visual images representing 

network traffic.  Images are nothing more than matrices that are interpreted in a visual 

manner [25].  Singular value decomposition compression is an image reduction method 

that reduces the matrix data that comprise a digital image.  The method of SVD 

compression does not require a conversion of the data into an image format but only a 

matrix format for implementation. 

2.4.1. SVD Compression  

Singular value decomposition can be looked at from three mutually compatible 

points of view.  First, it can be viewed as a method for transforming correlated variables 

into a set of uncorrelated ones that better expose the various relationships among the 

original data items. At the same time, SVD is a method for identifying and ordering the 

dimensions along which data points exhibit the most variation. This leads to the third way 

of viewing SVD, as a way to find the best approximation of the original data points using 

fewer dimensions [3]. This leads to the assertion that SVD can be used as a method for 

data reduction.  SVD is chosen as the form of compression for its ease in calculation and 

the evaluation of singular values, when calculating the decomposition.  The singular 

values are the square root of the eigenvalues.  

By applying SVD to the matrix, the matrix can be expressed as:   

 Tf U V= Σ  (1) 
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Where: 

f = matrix of network element data 
U = is an rowsm by rowsm orthogonal unitary matrix  
Σ = is an rowsm by columnsm diagonal matrix (0 except on its main diagonal) 
V = is a columnsm by columnsm orthogonal unitary matrix, where VT = V-1 or transpose 
matrix of V 

  
In the decomposition the diagonal entries of Σ  are the singular values of f , and by 

convention they can be ordered by decreasing magnitude. 

Since the network traffic elements are now in an NxN matrix format.  The matrix 

can be treated much like an image matrix for compression.  The matrix can be 

compressed by SVD by defining approximations sf  to f  by  

 
1

s
T

s i i i
i

f u vσ
=

=∑  (2)  

Where: 

σ = s largest singular values, 1σ , …, sσ , replacing the rest with zeros. 
u = s columns, 1u , …, su , replacing the rest with zeros. 
v = s rows, 1v , …, sv , replacing the rest with zeros. 
 
The largest singular values correspond to the most important information of the 

matrix.   By the Eckart-Young Theorem [8], sf  is the best rank s approximation to f in 

the sense of minimizing: 

 2
, ,

, 1
( )

s

i j i j
i j

f g
=

−∑  (3)  

Where: 

g = all matrices having exactly s nonzero singular values. Noting that with only 
s  nonzero singular values of sf , it is only necessary to store the first s columns of 
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U and s rows of TV in order to represent sf .  The total number of elements 

needed to store is (1 )r cs m m+ + , which is less than r cm m for
1

r c

r c

m ms
m m

<
+

.   

 
Figure 1 illustrates the method of SVD compression with the example of a simple 

matrix, shown below. 

 

1 2 3
4 5 6
7 8 9
10 11 12

A =
 

0.1409 0.8247 0.5418 0.0803
0.3439 0.4263 0.6626 0.5109
0.5470 0.0278 0.3003 0.7809
0.7501 0.3706 0.4211 0.3503

U

− − −
− − −

=
− − − −
−

  25.4624 0 0
0 1.2907 0
0 0 0.00

Σ =
   0.5045 0.7608 0.4082

0.5745 0.0570 0.8165
0.6445 0.6465 0.4082

V
− −

= −
− − −

 

0.1409 0.8247
0.3439 0.4263
0.5470 0.0278
0.7501 0.3706

iu

− −
− −

=
− −
−

 25.4624 0
0 1.2907iσ =   0.5045 0.5745 0.6445

0.7608 0.0570 0.6465
T
iv

− − −
=

−
 

1

1 2 3
4 5 6
7 8 9
10 11 12

s
T

i i i s
i

u v aσ
=

= =∑
 

 
Figure 1. SVD Compression Example 
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III. Methodology 
 

From the background research, monitoring tools are using various methods to 

represent large amounts of data to save system resources.  One method taken from image 

compression is SVD compression.  Testing SVD compression in relation to network 

monitoring traffic is the focus of the following experiment.   

3.1. Approach 

 The proposed approach takes selected data elements from network monitoring 

traffic, and applies them to an NxN matrix.  The cells in the matrix represent the specified 

network traffic monitoring field values gathered from datasets during the selected time 

frame of examination.  Four time frames are tested in order to evaluate if data saturation 

affects the compression process.  Each matrix is kept at a constant size, 200x200, in order 

to maintain consistency for placement of network traffic field value.      

 For this experiment, the source and destination port value is used for placement 

in the matrix.  Port values from the source field are used for placement in individual 

rows, while destination port values are used to determine column placement in the 

matrix.  The matrix is organized starting from the top left of the matrix.   Values from 

packets with low numbered ports are located closer towards this area of the matrix as 

shown in Figure 2.  As port values increase the position of the value to be placed move, 

to the right for increased destination port and farther down for increased source port.   
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Figure 2. Matrix Cell Positioning 

The nature of populating the matrices allows for the possibility of a matrix cell 

containing multiple values over a single time frame.  The fields chosen for this 

experiment represent byte values captured from packets in the datasets.  These values 

were chosen so they can be added over the time frame.  The time frames used for each 

matrix were small to minimize the amount of data value combining.  

The original matrices are reduced using singular value decompression 

compression.  In order to assist in determining the maximum amount of SVD 

compression, the eigenvalues of each matrix are analyzed by quantity and value.  

Keeping only the most significant eigenvalues until Maximum compression is achieved.   

The Maximum compression is the amount of reduction to each of the decomposition 

matrices without causing a change in the values of the matrix by more than one.  The 

number of values in the three matrix decompositions needed to calculate the new 

compressed matrix is compared to the number of values needed to create the original 

matrix.  If the number of values from SVD compression is less than the number of values 

from original data, then the compression is considered successful. 
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3.2. System Boundaries  

 As shown in Figure 3 below, the System Under Test (SUT) is completely 

contained in a virtual environment, for the purposes of this experiment all algorithms, 

programs and calculations were performed in MATLAB 2012b on a Microsoft Windows 

7 operating system environment.   

 
Figure 3. System Block Diagram 

For matrix creation, the Information Exploration Shootout (IES) dataset was used.  

There are five different datasets of network traffic in IES.  Each contains approximately 

twenty minutes worth of network traffic capture and varies with the number of lines of 

data, from approximately 350,000 lines in the baseline dataset to over 600,000 lines of 

network packet data in the largest dataset capture.  These datasets were chosen because 

they provide a baseline, or ‘clean’ dataset, with no network attacks, as well as four other 

datasets that only contain a singular network attack.  While the network attack itself is not 
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being examined during this experiment, the network attack is useful to determine the 

compression algorithms ability to handle the additional data.  A key requirement is to not 

alter the original information in order to allow a network monitoring tool or administrator 

use it for analysis. 

However, the IES dataset was created in 1996 for public use in discovering 

common network attacks by analyzing very basic network TCP/UDP log capture data 

[34].  Because the dataset is so old, the experiment is limited to the fields provided in the 

datasets.  Newer, publicly available datasets that have been vetted by other research 

analysts are difficult to find.  Most notable is the Knowledge Discovery and Data Mining, 

KDD’99, dataset created by Lincoln Laboratories for the Defense Advanced Research 

Projects Agency, DARPA [36].  KDD’99 dataset is widely used for network intrusion 

and network monitoring analysis, but did not meet the criteria for this experiment because 

the KDD’99 is missing time stamp field need to gauge time frame.  Time frame is 

important for this experiment.  The volume of network traffic packets changes over time 

dependent on network activity.   The time stamp is used to assists this experiment in the 

simulation of real-time network data capture environment. 

The Component Under Test (CUT) is the SVD compression algorithm given the 

presented matrix format.  For the purposes of this experiment only three data fields are 

used in the compression algorithm.  These fields were chosen because they represent byte 

value and can be combined if the values were to occupy the same position in the matrix.  

Combining values can potentially limit analysis of the data by obscuring the difference in 

packet data over too long of a time frame.  However, sampling the network datasets at 

small intervals minimizes data combining. 
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3.3. Workload 

 The network traffic dataset provided for this experiment is the dataset created for 

the Information Exploration Shootout (IES) in 1996 [11].  IES dataset consists of five 

individual network traffic files containing a baseline set of network traffic that contains 

no attack traffic data and four with a single type of network attack each.  These attack 

types are listed in Table 1. 

Table 1. Network Datasets Attacks 
Name Type of Attack 

Baseline None 
Network 1 IP spoofing 
Network 2 FTP password guessing 
Network 3 Network Scanning 
Network 4 Network Hopping 

 

 The traffic was captured using the tcpdump tool and contains only thirteen 

different fields or elements for each packet that passed through the network.  Each file is 

in comma separated value format and contains approximately 20 minutes of traffic 

captured on the network [32].  All source and destination Internet Protocol (IP) addresses 

where masked to keep the network topology from being revealed.  As seen in Appendix 

A, the IP addresses where limited to only the fourth octet of digits.  Additionally, an 

initial analysis of each dataset shows that each packet either contains a source or 

destination an address with the final octet with a value of “2”. 

Through the initial analysis of the baseline profile, the following information 

about the traffic of the network was confirmed [14].  Most of the baseline request is 

composed of http requests, port 80, more frequently outbound than inbound.  The smtp 

protocol, port 25, is also common on the network. Also many connections occurred from 
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a few external hosts to UDP port 7001.  This illustrated a histogram plot of the Baseline 

dataset in Figure 4. 

 
Figure 4. Histogram of Ports, Baseline Dataset 

The top histogram is the source ports with the bottom being the destination port.  While 

there is a definitive disparity toward the lower ports, specifically port 80, there are still a 

large distribution of other ports used.     

3.4. System Parameters and Factors 

As seen in Table 2, each line of data in the datasets contains thirteen fields about 

each packet that passed through the collector.  Different attacks have different signatures 

indicating an attack.  Different fields are needed for examination to determine if an attack 

is occurring or has occurred.  Not every element for each data packet is needed for 

analysis depending on attack type.  Since the attack types for each dataset are known, this 
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experiment only uses the fields that are primarily associated with detection of these 

attacks, namely the ‘win,’ ‘buf,’ and ‘ulen’ fields.   

These fields are used individually for the matrix population and SVD 

compression.  Additionally the ‘win’ and ‘ulen’ values were combined and populated in 

to a single matrix. This combined matrix is used to represent the overall volume of data 

entering the network.  The ‘buf’ field was not needed because every packet that contained 

a ‘win’ value also contained a ‘buf’ value, so while the value would change the matrix 

placement would not. 

Table 2. Dataset Elements 
Data Element 
Field Name 

Description 

Time Converted to floating point seconds 
measured with 0.00001 precision 

Scraddr Final octet of source IP address 
Srcport Port address from the source address 
Destaddr Final octet of destination IP address 
Destport Port address for the destination address 
Flag Special designation for packet can 

contain syn, fin, push, rst, U, X, or 
XPE 

Seq1 Data sequence number of packet for 
nonUDP packets 

Seq2 Data sequence number of the data 
expect in return packet 

Ack Data sequence number of the next 
expected packet expected from the 
other direction on this connection 

Win Number of bytes of receive buffer 
space available from the other direction 
on this connection  

Buf Number of bytes of receive buffer 
space available on this connection 

Ulen Length in bytes of UDP packet 
Op Optional information about the packet 

such as DF – do not fragment 
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Time Frame:  One of the goals for network monitoring tools is detection as close 

to near real time as possible.  It was critical to choose data with a time stamp to simulate 

data used by a monitoring tool.  As previously mentioned the KDD’99 dataset, did not 

contain a time stamp.  Time intervals are chosen to see if there is any statistical difference 

in selected network traffic fields of the different datasets for varying intervals, as some 

networks can exhibit periods of greater traffic volume in shorter time intervals.  

However, too small of a time frame could yield too little information for analysis and 

would create a need to combine multiple matrices.  Initial analysis containing the average 

number of packets in each time frame for all the datasets are shown in Table 3.  

Table 3. Average Packets Over Time 
Dataset 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Baseline 95.516 191.032 382.0650 764.13 
Network 1 130.234 260.469 520.9395 1041.879 
Network 2 111.333 222.666 445.3327 890.6654 
Network 3 111.387 222.774 445.5486 891.0972 
Network 4 130.910 261.821 523.6413 1047.283 

 

Based on this initial analysis, the experiment alters the time frame of packets analyzed 

through a range of 0.25, 0.5, 1.0, and 2.0 second intervals. 

Matrix size: Maintaining a constant matrix size solidifies value placement in 

accordance with the matrix population method described in Section 3.1.  Additionally, 

given system restraints, a constant matrix size simplifies the calculation and 

implementation of SVD compression.     

Computer networks ports have 216 or 65,536 ports.  Not all ports are used at all 

times.  Most common or critical system functions have very low port numbers below 

1024, and are considered “reserved.”  The higher ports are open and typically used by 
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different software applications.  Since the lower numbered ports are more common, 

having a standard size for the matrix allows for determination of what service or what 

type of application is used.  If a value or quantity of values is present in a specific row or 

column, this indicates a specific port or process was used during that time frame.  Based 

on average number of packets for the longest time interval for all the datasets, the matrix 

size chosen for this experiment is 200x200 cells, giving over 40,000 different positions 

for a two second interval. 

Source and destination ports: The IP addresses were masked and always 

contained the value “2” in either source or destination addresses.  This can be observed in 

Appendix A.  The lack of diversity in IP addresses disallowed their use for matrix 

population   However, the source and destination ports showed much more variation for 

each packet throughout the duration of each dataset, as shown in Figure 4.  Because the 

matrix size has been set to 200x200, there is potential for values from different ports that 

are close to one another to combine in the same cell.  The use of small time frames 

decreases this occurrence with the Maximum average ports per matrix of 104 ports used 

between both source and destination, as shown in Table 4 below. 

Table 4. Dataset Port Analysis 
 Total # of ports used Avg # of ports per Matrix at 2.0 sec 

Baseline 4245 70.1319 
Std Dev 8.9015 

Network1 4269 103.9238 
11.5706 

Network 2 4197 99.0850 
11.6786 

Network 3 4281 99.6713 
10.7611 

Network 4 4269 104.2897 
11.6447 
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This allowed the use of port as a method of positioning the individual packet 

element values in the matrix fields.  Additionally, having the size of the matrix fixed 

allowed for consistent placement of packet element data based on port number and 

direction of packet flow, either outbound or inbound.  Given time frames selected for the 

experiment, the number of ports used per matrix should allow for a sparsely populated 

matrix. 

Buffer Size: The ‘win,’ ‘buf,’ and ‘ulen’ fields in the datasets determined the 

amount of data transferred in the individual packets.  These values are used and 

potentially combined in the created matrix depending on the flow of the traffic over the 

selected time interval.  

   Compression size:  Singular Value Decomposition compression operates on the 

basis of eliminating the singular values that are least important to the original matrix.  

Therefore in order to compress a matrix by 50%, one needs to eliminate the lowest 50% 

of the singular values.  As stated before, the goal is to reduce the matrix as much as 

possible without altering the individual values from the original matrix.  The compression 

ratio starts at 50% and adjusts to compress more or less until the highest level of 

compression is achieved without any of the values of the original matrix being altered. 

3.5. Performance Metrics 

The metrics taken from this experiment are comparisons between the compressed 

matrix to the original matrix, and the change in values before and after the SVD 

compression has been applied.  These values varied based on time frame selected for the 

individual experiments.  If there is a difference between individual fields, the difference 
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is recorded and compared to the value of the original uncompressed matrix.  The values 

taken are: 

Maximum difference value: This is the Maximum value of the difference between 

the entire set of non-compressed and compressed matrices.  This value indicated how 

much the values from the original matrix have changed due to loss of data from the SVD 

compression.  This value is not allowed to be greater than one for the Maximum 

compression matrix sets. 

Maximum compression: This value is the amount of removed data from the 

original decomposition matrices; e.g 80% indicates that the decomposition matrices only 

retain 20% of the original data.  This is the value at which further compression results in 

the individual values occupying the matrix begin to vary by greater than one from the 

original value.  Determination of this value requires many simulations at different levels 

of compression.   

Mean number of Eigenvalues:  The eigenvalues, when ordered, determine which 

values carry the most weight.  Eliminating the eigenvalues with the least value assist in 

determining how much compression will be needed in determining maximum 

compression.   

Mean number of Eigenvalues greater than one: This helped determine the 

Maximum compression value.  The mean number of these significant eigenvalues 

provided insight into how much of the matrix to reduced during compression.  Initial 

analysis of matrices indicates that the eigenvalues for each matrix are composed of values 

that are either much greater than one or much less than one. 
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Mean number of values per matrix:  This measurement helps determine how 

sparse the matrix is.  If this value is too low then compression is a futile effort and no 

further analysis of this matrix is necessary.  Since the matrices are fixed in size, each 

matrix is anticipated to be mostly empty or sparse.  A simple count of non-zero values in 

the original matrix accounts for how many should be in the compressed matrix.   

Mean number of combined values in the decomposition: This value examines the 

number of non-zero values for each of the three reduced matrices after compression.  

This is the minimum number of values needed to recalculate the original matrix.  This 

value does not count the zero values because of the use of the use of a matrix format. 

3.6. Experimental Design 

The experiment is partial factorial; each network dataset is divided and parsed 

along the four time intervals with the three selected data fields over the entire twenty 

minute duration.  The datasets provided represent the same network with a baseline and 

four attack datasets. The purpose of the experiment is not to distort the data, but to allow 

for the data to be used by a network monitoring tool or administrator.  The fact that the 

network is under attack does not interfere with the use the data.  This allows for all 

datasets to be compared relative to one another in evaluating the compression technique.  

The sample sizes for each dataset varied based on selected time frame. The fewest 

number of samples in all the datasets is in the baseline 2.0 second analyses, which 

yielded the smallest sample size of 470 matrices throughout the entire experiment. 

Each of the four time frame samples is reduced twice.  The first is to 50% and the 

second is referred to as Maximum compression.  Maximum compression is defined as the 
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lowest compression level SVD can achieve without altering any of the individual values 

by more than one.  The eigenvalues of the original matrix are analyzed to aide in the 

determination of the Maximum compression value.  Both quantity and value of the 

eigenvalues are observed to determine how much reduction should be implemented. 

Simulations are run until the Maximum compression is determined by increasing or 

decreasing the amount of values eliminated by SVD compression.  Once the Maximum 

compression value is determined then the quantity of values in the decompositions are 

compared to the number of original data values. 

3.7. Evaluation Technique 

To evaluate this experiment multiple measurements are taken of the matrices and 

matrix values before and after SVD compression has been applied.  To validate that the 

compression algorithm does not eliminate too much data, the values of the individual 

matrices cells are compared from before and after SVD compression in two ways.  Based 

on matrix size and number of ports used per time frame, most cell values of the original 

matrices are zero.  It is expected that these zero values are the most likely to change due 

to SVD compression.  Therefore, in order to eliminate insignificant data created through 

the SVD compression algorithm, only the values greater than one are counted. This 

quantity of values should be equal to the number of values in the original matrix; the first 

comparison.  Secondly, the individual values of the cells counted are compared to the 

original matrix. If these individual values have a change of less than one, then the 

compression is considered successful. 
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The Maximum compression is determined, as the maximum amount of reduction 

performed to the decomposition matrices without the resulting calculated matrix values 

being altered by more than a value of one.  Once the Maximum compression has been 

determined, the mean number of values of each reduced decomposition matrix counted.   

Only the values greater than one are counted, as all other values are considered altered 

zero values from the original matrix by the SVD compression process.  The total quantity 

of values in the decomposition matrices is then compared to the total number of values 

needed to create the original matrix. 

These quantities and values are gathered on all five datasets and at each time 

frame sample.  This allowed for a large sample set of how the SVD compression 

algorithm performs given the varying nature of the network dataset values.  A two sample 

t-test comparing: the samples of values used to create the original matrix and the quantity 

of values counted from the decomposition for each matrix, is conducted to determine if 

these sets of data are statistically different from each other.   

3.8. Summary 

A known and tested network traffic data set, IES, is used and parsed into NxN 

matrixes based on individual data fields that are network traffic measurements. The 

matrices are then compressed using singular value decomposition.  The compression 

level is equivalent to Maximum amount of compression where the matrix values do not 

vary by more than one. The individual values of the compressed matrices are compared 

to the original to determine if any significant variance has occurred.  The total number of 

values created from the decomposition after compression are measured to compare 
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against the total number of values that would need to be sent to equal the amount of data 

put into each matrix.  The IES dataset contains five separate network captures 

representing first a baseline network and four captures featuring a single network attack 

in each network. The datasets parsed the packet capture data using four different time 

intervals of 0.25, 0.5, 1.0 and 2.0 seconds for the entire dataset.   

The resulting values in the compressed matrices are compared to the values of the 

original matrices. In addition, after compressing the matrices, the quantity of values in the 

resulting decomposition matrices is compared to the number values from original data 

needed to recreate the data from the original matrix.  
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IV. Analysis and Results 

4.1. Results of Simulation Scenarios 

4.1.1. Baseline dataset analysis: 

  When looking at the data for the ‘win’ field, it was observed that the number of 

the eigenvalues generated from the original matrices tend to show that each matrix 

generates a significant number of eigenvalues, only about half of them are of significant 

value at or greater than on the value of one. Compressing the matrices to 50% allowed 

keeping all of the eigenvalues for each time frame and the resulting compressed matrix 

contained near identical data with the largest difference in value from any matrix being 

significantly less the one byte value. The number of values needed for the decomposition 

matrices in 0.25, 0.5, and 1.0 second time frame was not less than the total number values 

from the original data, as seen in first row of Table 5.  However the 2.0 sec time frame 

for Maximum compression did decrease the overall number of values from the original 

data in Table 6.  

Table 5. Uncompressed matrix using just ‘win’ field - Baseline 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

382.065 764.13 1528.2 3056.5 

Mean # values per matrix 35.5243 
Std 7.9278 

48.6955 
Std 9.6032 

66.5123  
Std 11.3596 

92.2234  
Std 14.4679 

Mean # of ports used per 
matrix 

32.2775 
Std 6.1890 

41.1874 
Std 6.8655 

53.6499 
Std 7.3363 

70.1319 
Std 8.9015 

Mean # of Eigenvalues 
per matrix 

12.4809 
Std 4.1601 

16.3577 
Std 6.7512 

24.9797 
Std 11.1454 

36.4043 
Std 13.6312 

Mean # of Eigenvalues < 
1 per matrix 

9.7653 
Std 2.7797 

11.6821 
Std 3.0334 

13.7780 
Std 3.2387 

16.4766 
Std 3.2327 

Maximum % compression 87 85 83 80 
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Table 6. Compressed matrices using ‘win’ field - Baseline 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of combined values 
of decomposed matrices at 
50% 

15291 19640 24652 29581 

Mean # values per matrix 
greater than 1 at 50% 
compression 

35.5243 
7.9278 

48.6955 
9.6032 

66.5123 
11.3596 

92.2234 
14.4679 

Maximum difference in 
values from original matrix 

4.556x10-13 9.017x10-13 2.630x10-12 1.148x10-11 

Mean # of combined values 
of decomposed matrices at 
Maximum 

560.655 963.4581 1599.4 2875.8 

Mean # values per matrix 
greater than 1 at Maximum 
compression 

35.5243 
7.9278 

48.6955 
9.6032 

66.5123 
11.3596 

92.2234 
14.4679 

Maximum difference in 
values from original matrix 

4.556x10-13 9.017x10-13 2.630x10-12 1.147x10-12 

 

The ‘buf’ field data yielded similar results in Table 7 and Table 8.  There were 

approximately 20 entries per matrix making these matrices sparse than the ‘win’ field.  

There were also very few eigenvalues generated by each matrix.  The 50% compression 

allowed for all eigenvalues to be kept, and that all the values of the matrix did not change 

by more than a value of 0.004.  For Maximum compression, a closer look at the 

eigenvalues for each time frame provides evidence that even though the eigenvalues 

increased as the amount of data per matrix increased, the amount of eigenvalues greater 

than one did not increase at the same rate.  The low amount of significant eigenvalues 

allowed for a Maximum compression for each matrix set greater than 50%.  The 

Maximum compression sets yielded a reduction in number of values from the original 

data in every time frame by 76.8%, 66.7%, 66.2%, and 68.4% respectively. 
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Table 7. Uncompressed matrix using just ‘buf’ field - Baseline 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

382.065 764.13 1528.2 3056.5 

Mean # values per matrix 19.3217 
4.5799 

28.5618 
5.7907 

41.2085 
7.3254 

61.2085 
10.4500 

Mean # of ports used per 
matrix 

32.2775 
6.1890 

41.1874 
6.8655 

53.6499 
7.3363 

70.1319 
8.9015 

Mean # of Eigenvalues per 
matrix 

3.6921 
2.1660 

6.5921 
2.4747 

9.4771 
3.2241 

13.0766 
6.1341 

Mean # of Eigenvalues < 1 
per matrix 

3.2452 
1.888 

5.3228 
1.9468 

6.9146 
1.9040 

8.1149 
1.9094 

Maximum % compression 95 93 91 90 
 

Table 8. Compressed matrices using just ‘buf’ field - Baseline 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

1327.9 2914.3 5136.1 8025.8 

Mean # values < 1 at 50% 
compression per matrix 

19.0019 
4.5417 

28.2916 
5.7889 

41.6830 
7.3562 

60.9404 
10.4716 

Maximum difference in 
values from original matrix 

0.0014 0.0016 0.0032 0.0043 

Mean # of values from SVD 
at Maximum 

88.6709 254.7293 516.1217 966.3106 

Mean # values < 1 at 
Maximum SVD  per matrix 

14.9690 
3.4717 

26.3061 
5.1106 

41.0438 
7.1319 

60.2213 
10.2889 

Maximum difference in 
values from original matrix 

0.0901 0.0279 0.0619 0.0340 

 

Due to small amount of UDP packets in Table 9 for this dataset there is no need for 

further analysis of only UDP packet. 

Table 9. Uncompressed matrix using just ‘ulen’ field - Baseline 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values per matrix 0.8520 
0.5123 

0.9753 
0.6004 

1.686 
0.7813 

1.3957 
1.2098 
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 The final set of matrices combined the fields ‘win’ and ‘ulen’ fields, Table 10 and 

Table 11.  This matrix performed similarly to the singular ‘win’ field in regards to 

Maximum compression and overall performance in values produced form the 

decomposition matrices.  The Maximum compression did value did decrease slightly 

compared to the singular ‘win’ field.  This is due to the low volume of ‘ulen’ packets 

passing through the network over the course of the dataset.  Both 50% and Maximum 

compression for this set of matrices yielded no significant reduction in values.  

Table 10. Uncompressed matrix using combined ‘win’ and ‘ulen’ fields - Baseline 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

477.5813 955.1625 1910.325 3820.65 

Mean # values per matrix 36.3763 
7.9285 

49.6708 
9.5888 

67.6809 
11.3513 

93.6191 
14.48.35 

Mean # of ports used per 
matrix 

32.2775 
6.1890 

41.1874 
6.8655 

53.6499 
7.3363 

70.1319 
Std 8.9015 

Mean # of Eigenvalues per 
matrix 

12.4806 
4.1557 

16.3711 
Std 6.7560 

24.9936 
Std 11.1426 

36.4553 
Std 13.5945 

Mean # of Eigenvalues < 1 
per matrix 

9.7996 
2.7794 

11.6907 
3.0350 

13.7930 
3.2440 

16.5021 
3.2440 

Maximum % compression 87 85 83 80 
 

Table 11. Compressed matrices using combined ‘win’ and ‘ulen’ fields - Baseline 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

3392.4 5149.8 7435.6 10895 

Mean # values < 1 at 50% 
compression per matrix 

36.3763 
7.9285 

49.6708 
9.5888 

67.6809 
11.3513 

93.6191 
14.4835 

Maximum difference in 
values from original matrix 

4.556 x10-13 9.017 x10-13 2.630 x10-12 1.148 x10-11 

Mean # of values from 
SVD at Maximum 

567.6340 986.3695 1656.6 3021.3 

Mean # values < 1 at 
Maximum SVD  per matrix 

36.3763 
7.9285 

49.6708 
9.5888 

67.6809 
11.3513 

93.6191 
14.4835 

Maximum difference in 
values from original matrix 

4.556x10-13 9.017x10-12 2.630x10-12 1.148x10-11 
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Overall Summary: 

 The SVD compression algorithm appears to function well at levels much greater 

than 50% reduction of decomposition size.  Eigenvalues for all matrices and all fields 

appear to fall into two categories: much greater than one or much less than one.  Though 

there are a significant number of eigenvalues that are much less than one, most of these 

can be removed without affecting the values in the original matrix.  SVD compression 

seems to create a ‘noise floor’ in terms of values in the recombined compressed matrix.  

The values are changed are not changed much as the tables indicate.  

4.1.2. Network 1 dataset analysis: 

 For the Network 1 dataset ‘win’ field, there is significantly more data per matrix 

as seen in the first row of the table below.  The 50% compression allowed for all original 

eigenvalues to be kept for all time frames, and shows no significant change in values as 

seen in Table 12 and Table 13.  However, the result of the compression using the 

Maximum compression size remains the same with no significant difference in value.  It 

was observed that while the eigenvalues increased significantly between the time frames, 

the number of eigenvalues greater than one did not increase at the same rate.  The number 

of data values for each of the compressed matrix sets was not less than the original 

number of values needed to create the matrix. 
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Table 12. Uncompressed matrix using just ‘win’ field value – Network 1 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

520.9395 1041.879 2083.758 4167.516 

Mean # values per matrix 56.3949 
10.8051 

79.8048 
13.2184 

112.0565 
14.6028 

152.5000 
18.6947 

Mean # of ports used per 
matrix 

45.9411 
8.0200 

59.9057 
8.8850 

79.7060 
9.3766 

103.9238 
11.5706 

Mean # of Eigenvalues per 
matrix 

21.8033 
8.3342 

36.3609 
10.9554 

50.0556 
15.1289 

69.8576 
19.6401 

Mean # of Eigenvalues < 1 
per matrix 

14.3859 
3.5200 

18.2286 
3.8940 

21.5540 
4.1119 

24.8874 
4.4470 

Maximum % compression 82 78 74.5 70.5 
 

Table 13. Compressed matrices using ‘win’ field value - Network 1 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

6550.1 9932.6 13995 17980 

Mean # values < 1 at 50% 
compression per matrix 

56.3949 
10.8051 

79.8048 
13.2184 

112.0565 
14.6028 

152.5000 
18.6947 

Maximum difference in 
values from original matrix 

6.005x10-13 1.123x10-12 5.533x10-12 2.211x10-11 

Mean # of values from 
SVD at Maximum 

1523.7 2958.9 5415.2 8869.5 

Mean # values < 1 at 
Maximum SVD  per 
matrix 

56.3949 
10.8051 

79.8048 
13.2184 

112.0565 
14.6028 

152.5000 
18.6947 

Maximum difference in 
values from original matrix 

6.005x10-13 1.123x10-12 5.533x10-12 2.211x10-11 

 

 The ‘buf’ field also increased in number of values per matrix when compared to 

the baseline dataset.  A closer evaluation of these eigenvalues shows they follow the 

same trend either belonging into one of two categories much greater than one or much 

less than one.  All values maintained their original values without significant change.  

The number of data values for each of the compressed matrix sets was not less than the 

original number of values needed to create the matrix shown in the difference between 

Table 14 and Table 15. 
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Table 14. Uncompressed matrix using just ‘buf’ field value - Network 1 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

520.9395 1041.879 2083.758 4167.516 

Mean # values per matrix 41.1454 
7.5908 

62.7626 
9.9912 

94.1736 
11.9776 

135.7401 
15.8890 

Mean # of ports used per 
matrix 

45.9411 
8.0200 

59.9057 
8.8850 

79.7060 
9.3766 

103.9238 
11.5706 

Mean # of Eigenvalues per 
matrix 

13.6840 
4.2439 

22.0096 
7.7416 

37.9435 
10.9366 

58.1010 
15.8949 

Mean # of Eigenvalues < 1 
per matrix 

10.8359 
3.0269 

14.9616 
3.3441 

19.1968 
3.5823 

23.3709 
4.2114 

Maximum % compression 86 82 77 72 
 

Table 15. Compressed matrices using just ‘buf’ field value - Network 1 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

4860.1 8155.8 12254 16561 

Mean # values < 1 at 50% 
compression per matrix 

40.5502 
7.5065 

62.0709 
9.8979 

93.3721 
11.8970 

134.9719 
15.8222 

Maximum difference in values 
from original matrix 

6.312 x10-4 0.0013 0.0025 0.0050 

Mean # of values from SVD at 
Maximum 

813.1096 1866.7 3931.4 7241.5 

Mean # values < 1 at 
Maximum SVD  per matrix 

40.5369 
7.4928 

62.0697 
9.8968 

93.3721 
11.8970 

134.9719 
15.8222 

Maximum difference in values 
from original matrix 

6.312x10-4 0.0013 0.0025 0.0050 

 

Due to small amount of UDP packets for this dataset, in Table 16, there is no need 

for further analysis of only UDP packets. 

Table 16. Uncompressed matrix using just ‘ulen’ field - Network 1 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values per matrix 0.0762 
0.2910 

0.1519 
0.4260 

0.3023 
0.6156 

0.5977 
0.9699 

 

 The combined field matrix for Network 1, Table 17 and Table 18, behaved similar 

to the ‘win’ matrix set.  The increased average number of packets per matrix did not 



38 

significantly affect this matrix set, as the values from the ‘ulen’ field did not significantly 

alter the values after either 50% or Maximum compression.   Nor did the addition of the 

‘ulen’ data significantly alter the total number of eigenvalues per matrix.  The number of 

data values for each of the compressed matrix sets was not less than the original number 

of values needed to create the matrix. 

Table 17. Uncompressed matrix using combined ‘win’ and ‘ulen’ fields - Network 1 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

651.1744 1302.349 2604.698 5209.395 

Mean # values per matrix 56.4681 
10.8121 

79.9433 
13.2327 

112.3115 
14.6207 

152.8957 
18.6957 

Mean # of ports used per 
matrix 

45.9411 
8.0200 

59.9057 
8.8850 

79.7060 
9.3766 

103.9238 
11.5706 

Mean # of Eigenvalues per 
matrix 

21.8146 
8.3350 

36.3880 
10.9542 

50.0482 
15.1424 

70.0033 
19.5225 

Mean # of Eigenvalues < 1 
per matrix 

14.5556 
3.5205 

18.2520 
3.8948 

21.5706 
4.1106 

24.9040 
4.4466 

Maximum % compression 82 78 74 71 
 

Table 18. Compressed matrix using combined ‘win’ and ‘ulen’ fields - Network 1 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

6550.4 9933 13996 17982 

Mean # values < 1 at 50% 
compression per matrix 

56.3983 
10.8060 

79.8114 
13.2189 

112.0698 
14.6009 

152.5232 
18.6857 

Maximum difference in 
values from original matrix 

6.005x10-13 1.123x10-12 5.533x10-12 2.211x10-11 

Mean # of values from SVD 
at Maximum 

1523.8 2959.3 5415.8 8872.2 

Mean # values < 1 at 
Maximum SVD  per matrix 

56.3983 
10.8060 

79.8114 
13.2189 

112.0698 
14.6009 

152.5232 
18.6857 

Maximum difference in 
values from original matrix 

6.005x10-13 1.123x10-12 5.533x10-12 2.211x10-11 

 

Overall Summary: 
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 Due to the significant increase in the number of packets per time period, there is a 

large amount of data per matrix.  As observed in the Baseline dataset, there is a growing 

trend of an increase in number of values per matrix leads to a greater increase of 

eigenvalues whose value is much less than one and only a slight increase in the number 

of eigenvalues greater than one.  Additionally all eigenvalues have continued to be much 

greater than one or much less than one. None of these compression sets contained fewer 

values than the original values needed to create the matrix. 

4.1.3. Network 2 dataset analysis: 

 The ‘win’ field for Network 2 dataset, in Table 19 and Table 20, showed there 

were significantly more values per matrix than the Baseline, though not as much as in 

Network 1.  In these experiments, the compression continues to show no significant 

change in number of values created from the decomposition matrices.  The number of 

eigenvalues continues to increase as the number of data increases.  The minimum value 

for each time frame shows a large minimum nonzero value. 

Table 19. Uncompressed matrix using just ‘win’ field - Network 2 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

445.3327 890.6654 1781.331 3562.662 

Mean # values per matrix 52.2233 
10.7007 

74.7407 
13.5907 

105.9722 
15.5858 

143.5213 
19.3885 

Mean # of ports used per 
matrix 

43.1967 
7.9450 

56.9865 
9.0869 

76.4352 
9.7159 

99.0850 
11.6786 

Mean # of Eigenvalues per 
matrix 

20.5946 
7.5184 

34.2509 
11.0529 

47.4167 
14.6010 

64.0573 
20.2937 

Mean # of Eigenvalues < 1 
per matrix 

14.5556 
3.5058 

18.2520 
3.8688 

21.5706 
3.8909 

24.9040 
3.9966 

Maximum % compression 82 78 74 71 
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Table 20. Compressed matrices using ‘win’ field value - Network 2 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

5120 7917.1 11697 15783 

Mean # values < 1 at 50% 
compression per matrix 

52.2233 
10.7007 

74.7407 
13.5907 

105.9722 
15.5858 

143.5213 
19.3885 

Maximum difference in 
values from original matrix 

8.405x10-13 2.076x10-12 5.188x10-12 2.066x10-11 

Mean # of values from SVD 
at Maximum 

1163.4 2274.5 4327.1 7389.6 

Mean # values < 1 at 
Maximum SVD  per matrix 

52.2216 
10.6970 

74.7407 
13.5907 

105.9722 
15.5858 

143.5213 
19.3885 

Maximum difference in 
values from original matrix 

8.405x10-13 2.076x10-12 5.188x10-12 2.066x10-11 

 

 The matrices for ‘buf’ field in Network 2, Table 21 and Table 22, initially 

appeared similar to the values in of Table 14 and Table 15, where the matrices contained 

few eigenvalues.  While this allowed for greater Maximum compression, it did increase 

significantly the difference in value after the compression.  The 50% compression did not 

produce fewer values than the original data.  The Maximum compression yielded a 

reduction in total number of values for all the time frames.  The number of values per 

matrix decreased on average by 63.7%, 42.6%, 29%, and 39.5% respectively for each 

time frame sample.   
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Table 21. Uncompressed matrix using just ‘buf’ field value - Network 2 
  0.25 sec 0.5 sec 1.0 sec 2.0 sec 
Mean # of values from 
original data 

445.3327 890.6654 1781.331 3562.662 

Mean # values per matrix 28.9370 
6.8600 

44.4777 
8.9827 

68.3602 
9.7428 

96.2089 
12.3035 

Mean # of ports used per 
matrix 

43.1967 
7.9450 

56.9865 
9.0869 

76.4352 
9.7159 

99.0850 
11.6786 

Mean # of Eigenvalues per 
matrix 

5.4533 
2.8362 

9.7658 
3.6147 

15.6093 
5.5724 

24.8872 
10.4096 

Mean # of Eigenvalues < 1 
per matrix 

4.4905 
2.2408 

7.4905 
2.2912 

9.8528 
1.9544 

11.3826 
1.9653 

Maximum % compression 93 90 88 87 
 

Table 22. Compressed matrix using just ‘buf’ field - Network 2 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

2080.1 4604.6 8380.7 11960 

Mean # values < 1 at 50% 
compression per matrix 

28.9370 
6.8600 

44.4777 
8.9827 

68.3602 
9.7428 

96.2089 
12.3035 

Maximum difference in 
values from original matrix 

0 0 0 0 

Mean # of values from SVD 
at Maximum 

161.7598 511.6243 1264.7 2154.8 

Mean # values < 1 at 
Maximum SVD  per matrix 

21.5824 
4.7205 

40.9181 
7.7695 

67.0861 
9.2960 

94.6728 
11.9738 

Maximum difference in 
values from original matrix 

0.1203 0.0889 0.0315 0.0628 

 

Due to small amount of UDP packets, as seen in Table 23, for this dataset there is 

no need for further analysis of only UDP packets. 

Table 23. Uncompressed matrix using just ‘ulen’ field - Network 2 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values per matrix 0.0585 
0.2436 

0.1145 
0.3370 

0.2222 
0.4481 

0.3494 
0.5322 

 

 The results, shown in Table 24 and Table 25, contain the combined ‘win’ and 

‘ulen’ packet fields.  These findings were similar results to Network 1 shown in Table 17 
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and Table 18.  The data compressed to the 50% level with no significant change in values 

of the matrix.  Looking at the eigenvalues of this series, the values continue to be much 

greater than one and much less than one.  Maximum compression does not produce fewer 

values from its decomposition matrices on average for any time frame. 

Table 24. Uncompressed matrix using combined ‘win’ and ‘ulen’ fields - Network 2 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

556.6659 1113.332 2226.664 4453.327 

Mean # values per matrix 52.2818 
10.7033 

74.8552 
13.5946 

106.1944 
15.5875 

143.8706 
19.3821 

Mean # of ports used per 
matrix 

43.1967 
7.9450 

56.9865 
9.0869 

76.4352 
9.7159 

99.0850 
11.6786 

Mean # of Eigenvalues per 
matrix 

20.6026 
7.5211 

34.2924 
11.0481 

47.3787 
14.6305 

63.9335 
20.4051 

Mean # of Eigenvalues < 1 
per matrix 

14.5556 
3.5063 

18.2700 
3.8664 

21.6593 
3.8901 

25.1867 
3.9931 

Maximum % compression 82 78 74 71 
 

Table 25. Compressed matrix using combined ‘win’ and ‘ulen’ fields - Network 2 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

5121.2 7922.3 11714 15830 

Mean # values < 1 at 50% 
compression per matrix 

52.2818 
10.7033 

74.8552 
13.5946 

106.1944 
15.5875 

143.8706 
19.3821 

Maximum difference in 
values from original matrix 

8.405x10-13 2.076x10-

12 
5.188x10-12 2.066x10-11 

Mean # of values from SVD 
at Maximum 

1164.7 2280.3 4348.7 7442.3 

Mean # values < 1 at 
Maximum SVD  per matrix 

52.2818 
10.7033 

74.8552 
13.5946 

106.1944 
15.5875 

143.8706 
19.3821 

Maximum difference in 
values from original matrix 

8.405x10-13 2.076x10-

12 
5.188x10-12 2.066x10-11 

 

Overall Summary: 

 Continued trends from the first two data sets persist: the number of significant 

eigenvalues increase at a much slower rate than the overall number of eigenvalues in each 
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matrix.  The increased time frame allowed for more data per matrix increasing the 

Maximum compression.  The number of values in the Maximum compressed matrix set 

of the ‘buf’ field was consistently less than the number of original data values.  The ‘buf’ 

field was the only field to successfully reduce the overall number of values.  Both the 

other matrices increased the number of values from the original dataset.   

4.1.4. Network 3 dataset analysis: 

The results for matrix set using the ‘win’ field of Network 3,seen in Table 26 and 

Table 27, yielded a greater amount of compression per time frame than in Network 2.  

When comparing the two networks, the number of values per matrix is approximately the 

same over the entire dataset, as shown in the first row of Table 19 and Table 26.  The 

behavior in this experiment is also similar.  However, the greater compression percentage 

for each time frame does not reduce the overall number of values from the original data. 

Table 26. Uncompressed matrix using just ‘win’ field - Network 3 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

445.5486 891.0972 1782.194 3564.389 

Mean # values per matrix 51.0406 
10.6842 

73.1738 
12.9950 

105.3649 
14.5850 

144.3794 
17.9455 

Mean # of ports used per 
matrix 

41.8498 
7.6831 

55.6176 
8.4786 

75.7746 
8.9996 

99.6713 
10.7611 

Mean # of Eigenvalues per 
matrix 

19.0350 
7.1264 

31.8319 
11.0038 

45.8070 
14.0745 

63.1381 
19.7636 

Mean # of Eigenvalues < 1 
per matrix 

13.1684 
3.2296 

16.1539 
3.727 

19.3491 
3.4322 

22.7133 
3.4073 

Maximum % compression 84 80 77 74 
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Table 27. Compressed matrix using ‘win’ field - Network 3 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

5552.9 8714 13017 16994 

Mean # values < 1 at 50% 
compression per matrix 

51.0406 
10.6841 

73.1738 
12.9950 

105.3649 
14.5850 

144.3794 
17.9455 

Maximum difference in 
values from original matrix 

2.228x10-4 1.335x10-12 6.964x10-12 1.728x10-11 

Mean # of values from SVD 
at Maximum 

1292.1 2444.9 4702.7 7539.4 

Mean # values < 1 at 
Maximum SVD  per matrix 

51.0406 
10.6841 

73.1738 
12.9950 

105.3649 
14.5850 

144.3794 
17.9455 

Maximum difference in 
values from original matrix 

2.228x10-4 1.335x10-12 6.964x10-12 1.728x10-11 

 

 The ‘buf’ field results are shown in Table 28 and Table 29.  The Maximum 

compressions for this field yielded fewer values in the decomposition matrices for each 

time frame than the number of values used in the original dataset.  The percentage 

reduced varied from each time frame, with the most reduction occurring at 0.25sec with 

41.6% in number of values on average through the entire dataset.  The other time frames 

reduced the number of values by 14.8%, 5.9%, and 25% respectively.   This reduction 

can be attributed to the mean number of values per matrix for the 0.25 seconds time 

frame being almost 35% less than the 0.5 seconds time frame on average, see Table 28. 
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Table 28. Uncompressed matrix using just ‘buf’ field - Network 3 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

445.5486 891.0972 1782.194 3564.389 

Mean # values per matrix 28.8643 
6.8975 

44.6859 
8.6656 

69.3623 
9.6298 

98.4790 
12.5320 

Mean # of ports used per 
matrix 

41.8498 
7.6831 

55.6176 
8.4786 

75.7746 
8.9996 

99.6713 
10.7611 

Mean # of Eigenvalues per 
matrix 

6.2373 
2.8228 

10.9237 
3.6756 

16.8816 
6.0747 

28.3059 
11.0850 

Mean # of Eigenvalues < 1 
per matrix 

5.1277 
2.1989 

8.0922 
2.0589 

10.2842 
1.8043 

11.5490 
1.8743 

Maximum % compression 93 90 88 87 
 

Table 29. Compressed matrix using just ‘buf’ field - Network 3 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

2525.5 5445.7 9454.4 13172 

Mean # values < 1 at 50% 
compression per matrix 

27.7975 
6.7816 

43.8633 
19.1279 

68.6456 
9.5635 

97.8916 
12.5654 

Maximum difference in 
values from original matrix 

0.0018 0.0022 0.0044 0.0070 

Mean # of values from SVD 
at Maximum 

260.178 759.0159 1677.6 2673.7 

Mean # values < 1 at 
Maximum SVD  per matrix 

25.1662 
5.7424 

43.2942 
8.3394 

68.3482 
9.4386 

97.7832 
12.5444 

Maximum difference in 
values from original matrix 

0.0111 0.0106 0.0070 0.0105 

 

Due to small amount of UDP packets, seen in Table 30, for this dataset there is no 

need for further analysis of only UDP packets 

Table 30. Uncompressed matrix using just ‘ulen’ field - Network 3 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values per matrix 0.0555 
0.2394 

0.1054 
0.3240 

0.1825 
0.4170 

0.2640 
0.4972 

 

 Table 31 and Table 32 represent the data gathered from the combined ‘win’ and 

‘ulen’ fields.  This matrix set for Network 3 behaved similar to the singular ‘win’ field 
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matrix.  The number of overall eigenvalues dramatically increased with the addition of 

the ‘ulen’ data.  The number of significant eigenvalues did not altered significantly, 

which is illustrated in the average Maximum compression remaining similar to the values 

of the ‘win’ field illustrated in Table 26.  The compressions for this matrix set did not 

produce a lower number of values than the original data. 

Table 31. Uncompressed matrix using combined ‘win’ and ‘ulen’ fields - Network 3 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

556.9358 1113.872 2227.743 4455.486 

Mean # values per matrix 51.0960 
10.6965 

73.2792 
13.0182 

105.5474 
14.6358 

144.6434 
18.0365 

Mean # of ports used per 
matrix 

41.8498 
7.6831 

55.6176 
8.4786 

75.7746 
8.9996 

99.6713 
10.7611 

Mean # of Eigenvalues per 
matrix 

51.0954 
10.6961 

73.2792 
13.0182 

105.5474 
14.6358 

144.6434 
18.0365 

Mean # of Eigenvalues < 1 
per matrix 

13.1684 
3.2328 

16.1539 
3.3787 

19.3491 
3.4443 

22.7133 
3.4348 

Maximum % compression 84 80 77 74 
 

Table 32. Compressed matrix using combined ‘win’ and ‘ulen’ fields - Network 3 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

5554.2 8724.6 13046 17037 

Mean # values < 1 at 50% 
compression per matrix 

51.0948 
10.6951 

73.2792 
13.1082 

105.5474 
14.6358 

144.6434 
18.0365 

Maximum difference in 
values from original matrix 

2.223x10-4 1.335x10-12 6.964x10-12 1.728x10-11 

Mean # of values from 
SVD at Maximum 

1293.4 2455.8 4733.5 7585.1 

Mean # values < 1 at 
Maximum SVD  per matrix 

51.0945 
10.6951 

73.2792 
13.1082 

105.5439 
14.6358 

144.6434 
18.0365 

Maximum difference in 
values from original matrix 

2.223x10-4 1.335x10-12 6.964x10-12 1.728x10-11 

 

Overall Summary: 
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 Trends established in previous network datasets continue to hold.  The number of 

eigenvalues continues to grow rapidly as the number of values per matrix increase.  The 

number of significant eigenvalues increases at a much slower rate, indicating that there is 

an increase in overall quantity of values per matrix.  However, most of the additional data 

is being combined in the matrix.  Only the ‘buf’ field compressions yielded a lower total 

quantity of values than the original data.  When comparing ‘buf’ to the other fields test in 

this dataset, the most notable difference is the number of values per matrix.  The ‘buf’ 

field contained significantly less values per matrix than the others per time frame.    

4.1.5. Network 4 dataset analysis: 

 The Network 4 analysis yielded the highest average number of packets per time 

frame for all the datasets.  The ‘win’ field failed to produce decompositions with fewer 

values than the original data for matrix creation, shown in Table 34.  The Maximum 

compression was found to be less than in the previous datasets, shown in Table 33.  This 

aligns with the trend of number of values per matrix.  Network 4 also contained the 

highest number of values per matrix indicating a large amount of traffic not being 

combined over common ports. 
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Table 33. Uncompressed matrix using just ‘win’ field - Network 4 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

523.6413 1047.283 2094.565 4189.13 

Mean # values per matrix 56.8561 
10.8863 

80.3557 
13.3984 

112.8846 
14.7869 

153.4868 
18.8882 

Mean # of ports used per 
matrix 

46.1353 
8.0303 

60.1134 
8.9307 

80.0249 
9.4363 

104.2897 
11.6447 

Mean # of Eigenvalues per 
matrix 

22.1592 
8.4628 

36.3153 
11.3776 

50.2874 
15.3333 

70.1308 
19.9094 

Mean # of Eigenvalues < 1 
per matrix 

14.6218 
3.5065 

18.2794 
3.8867 

21.5706 
4.1150 

24.8907 
4.4470 

Maximum % compression 82 78 74 71 
 

Table 34. Compressed matrix using ‘win’ field - Network 4 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

6656.2 10001 14078 18089 

Mean # values < 1 at 50% 
compression per matrix 

56.8561 
10.8863 

80.3557 
13.3984 

112.8846 
14.7869 

153.4868 
18.8882 

Maximum difference in 
values from original matrix 

5.977x10-13 1.157x10-

12 
5.506x10-12 2.375x10-11 

Mean # of values from SVD 
at Maximum 

1547.6 2973.5 5454.7 8927 

Mean # values < 1 at 
Maximum SVD  per matrix 

56.8561 
10.8863 

80.3557 
13.3984 

112.8846 
14.7869 

153.4868 
18.8882 

Maximum difference in 
values from original matrix 

5.977x10-13 1.157x10-

12 
5.506x10-12 2.375x10-11 

 

 The ‘buf’ field matrix set,  
Table 36, behaved similar to the Baseline and Network 2 and Network 3.  There were a 

very low number of values per matrix, Table 35.  This low value count yielded lower 

eigenvalues per matrix with most of their values being greater than one.  The Maximum 

compressions for all time frames allowed for a reduction in the number of values by 

48.6%, 22.7%, 20%, and 39.8% respectively. 
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Table 35. Uncompressed matrix using just ‘buf’ field - Network 4 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

523.6413 1047.283 2094.565 4189.13 

Mean # values per matrix 31.4222 
7.1574 

47.8186 
9.0189 

72.7890 
9.9570 

102.6308 
12.3360 

Mean # of ports used per 
matrix 

46.1353 
8.0303 

60.1134 
8.9307 

80.0249 
9.4363 

104.2897 
11.6447 

Mean # of Eigenvalues per 
matrix 

6.0345 
3.0863 

10.9662 
3.9263 

17.5457 
6.6753 

29.6788 
11.2040 

Mean # of Eigenvalues < 1 
per matrix 

4.9411 
2.3941 

8.1877 
2.2762 

10.5856 
1.8484 

11.8841 
1.8111 

Maximum % compression 93 90 88 86 
 

Table 36. Compressed matrix using just ‘buf’ field - Network 4 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

2824 6052.6 1019.3 1371.2 

Mean # values < 1 at 50% 
compression per matrix 

30.4051 
7.0335 

46.8495 
8.9392 

71.8563 
9.9344 

101.7533 
12.3362 

Maximum difference in 
values from original matrix 

0.0025 0.0029 0.0058 0.0099 

Mean # of values from SVD 
at Maximum 

269.1668 809.4395 1676.3 2522.5 

Mean # values < 1 at 
Maximum SVD  per matrix 

26.0928 
5.5041 

45.2327 
8.2209 

71.5066 
9.7233 

101.1623 
12.1644 

Maximum difference in 
values from original matrix 

0.0648 0.0521 0.0075 0.041 

 

Due to small amount of UDP packets, as seen in Table 37, for this dataset there is 

no need for further analysis of only UDP packets. 

Table 37. Uncompressed matrix using just ‘ulen’ field - Network 4 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values per matrix 0.0736 
0.2707 

0.1401 
0.3659 

0.2542 
0.4704 

0.3957 
0.5590 

 

 The combined matrix set for Network 4 also behaved similarly to the singular 

‘win’ matrix set shown in Table 38 Table 39.  The Maximum compressions failed to 
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yield fewer values than the original data.  This continues the trend seen in the other 

network datasets.   

Table 38. Uncompressed matrix using combined ‘win’ and ‘ulen’ fields - Network 4 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # of values from 
original data 

654.5516 1309.103 2618.207 5236.413 

Mean # values per matrix 56.9297 
10.8928 

80.4958 
13.4118 

113.1387 
14.8042 

153.8825 
18.8931 

Mean # of ports used per 
matrix 

46.1353 
8.0303 

60.1134 
8.9307 

80.0249 
9.4363 

104.2897 
11.6447 

Mean # of Eigenvalues per 
matrix 

22.1719 
8.4630 

36.3369 
11.3659 

50.2757 
15.3484 

70.1457 
19.9229 

Mean # of Eigenvalues < 1 
per matrix 

14.6317 
3.5093 

18.2982 
3.8868 

21.6080 
4.1203 

24.9553 
4.4569 

Maximum % compression 82 78 74 71 
 

Table 39. Compressed matrix using combined ‘win’ and ‘ulen’ fields - Network 4 
 0.25 sec 0.5 sec 1.0 sec 2.0 sec 

Mean # values < 1 at 50% 
SVD  per matrix 

6657.6 10007 14093 18117 

Mean # values < 1 at 50% 
compression per matrix 

56.9297 
10.8928 

80.4958 
13.4118 

113.1387 
14.8042 

153.8825 
18.8931 

Maximum difference in 
values from original matrix 

5.977x10-13 1.157x10-

12 
5.506x10-12 2.384x10-11 

Mean # of values from SVD 
at Maximum 

1549 2981.7 5474.5 8962.8 

Mean # values < 1 at 
Maximum SVD  per matrix 

56.9297 
10.8928 

80.4958 
13.4118 

113.1387 
14.8042 

153.8825 
18.8931 

Maximum difference in 
values from original matrix 

5.977x10-13 1.157x10-

12 
5.506x10-12 2.384x10-11 

 

Overall Summary: 

 Network 4 dataset test produced similar results to the Baseline and Network 1 and 

Network 3.  While the ‘buf’ field was able to decrease the overall number of values, the 

‘win’ and combination ‘win’ and ‘ulen’ matrix sets did not.  The other data fields did not 

yield few values than the original dataset.     
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4.2. Investigative Questions Answered 

Going back to the original investigative question, “using SVD compression is the 

size of the reduced decomposed data less than the size of the original?”  The answer to 

this question is the algorithm is inconsistent.  For most of the datasets the ‘win’ field did 

not produce a lower amount of values than the amount of values needed to create the 

matrix.  The ‘buf’ field did produce a lower amount of values, with the exception of 

Network 1.  Analyzing the difference between the two fields in Network 1 shows the 

minimum values in the ‘buf’ field are much lower than the minimum values of the ‘win’ 

values by factor of 1000 between these matrices.  When compared to ‘buf’ fields from 

other Networks, we see that quantity of values per matrix also increased during this 

dataset.  This led to an increase in eigenvalues, and a decrease in the Maximum 

compression.   

The second question, “How much can network traffic data be reduced by using 

SVD before the data values change?” is partially answered.  For this specific size matrix 

the average amount of compression varied based on time frame and number of values per 

matrix.  The amount of Maximum compression decreased as time frame, and as a result 

matrix data, increased.  The value for Maximum compression with SVD compression is 

greater than 50% for every evaluation where the individual values do not change by more 

than a value of one.  This is due to the sparse nature of the matrices created.  Since more 

than 50% of the matrix is empty, the method of measuring compression is always greater 

than 50%.   

However this leads into the final question: “Is the Maximum compression enough 

to reduce the overall amount of data before a change in the individual values occurs?”  
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The answer varies in the experiment.  For the entire ‘win’ field compressions the number 

of values failed to reduced the number of values in the decompositions to less than 

amount of the original data.  However, most of the ‘buf’ field compressions decreased the 

number of values.  Network 1 was the only network that did not yield a reduced number 

values for the ‘buf’ field.   

Examining this dataset relative to the others, Figure 5 shows the total number of 

cells containing a value per matrix for the ‘buf’ element across all the networks.  The 

graph clearly shows the number of values per matrix in the Network 1 dataset is higher 

than all the others.  When comparing the average value in each cell, Figure 6, we see that 

the value of any element did not determine if the number of values in the decomposition, 

but the overall total number of values in the individual matrix.   

 

 
Figure 5: Average # of Values per Matrix of 'buf' field, 1.0 sec time frame 
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Figure 6. Average Cell Value per Matrix of ‘buf’ field, 1.0 sec time frame 
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shows that even though there was a division in values of eigenvalues for each matrix, the 

highest small valued eigenvalues were not as insignificant as their values for maintaining 

individual value integrity.   

 Another trend observed throughout this experiment is that the low number of data 

values in the original matrix, without being compressed, allows for a lower amount of 

data values than the original data.  Comparing the first two rows of each table 

representing the uncompressed matrix verified this.  The difference in values actually 

decreases with the increase in time frame.  This decrease can be explained by trend of 

data occupying the same space inside the matrix, e.g. the matrix cell that contains 

multiple packets, combines the values of all those packets into the same cell in the 

matrix.  This experiment allowed the combining of data to take place because the values 

represented bytes transferred over the measured time frame.  This would not work for 

another type of network traffic element, such as the sequence number in the ‘seq1’ or 

‘seq2’ fields.  These fields cannot be combined in this simple manner.  However, based 

on the algorithm of placement the number of values per matrix would not change, as the 

same number of packets would place values into the matrix, only the value itself.   
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V.  Conclusions and Recommendations 

5.1. Conclusions of Research 

This research concludes that using SVD compression for the reduction of data in 

network monitoring traffic does not sufficiently decrease the volume of data for any 

specific data type.  While certain data fields can reduce the amount of data, the algorithm 

described in this thesis does not hold for all fields of network monitoring traffic.  

Appendix B shows the results of at two sample t-test performed between the number of 

values of original data per matrix and the number of values needed at Maximum 

compression at a 95% confidence interval.  The results show that almost all datasets do 

not have equal means confirming the results in Chapter 4.  The sole outlier was the ‘win’ 

field at 2.0 sec interval in the Baseline dataset.  The t-test for this outlier yielded a p-

value of 0.6503 meaning the difference between the two samples cannot be rejected given 

the mean and variance of the two samples.  All other p-values were much less than 0.001.  

The data suggests that the network monitoring traffic SVD compression algorithm 

only works with a small number of values per matrix relative to the number of original 

inputs.  The experiment illustrates that the number of matrix cells containing values 

grows at a slower rate than the number of packets contributing data to any individual 

matrix.  This confirms that most of the data inserted into the matrix was done by 

combining the data from multiple packets.  Dependent upon the needs of the network 

monitoring tool or administrator, the amount of data combination may be irrelevant.  To 

allow for the option of less data combining, the 0.25 and 0.5 second time frames indicate 

that SVD compression does not work for all fields.  
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5.2. Significance of Research 

According to George Gilder’s Law the total bandwidth of communication systems 

triples every twelve months.  This law of technology has held true, and the amount of 

network traffic globally has steadily increased.  Gordon Moore’s Law states that the 

processing power of a microchip doubles every 18 months.  These two laws are related as 

one cannot continue without the other.  From this increasing supply of data comes the 

need to monitor this data traffic.    Technology is advancing at rate where individual data 

values are simple to store and transfer. This trend does not imply that measures to reduce 

this data should not be explored.  

For example, the increasing use and adaptation of mobile technology has created 

a drop from these two laws traditional means of measurement.  While these two laws are 

still relevant to the new mobile technology, they are dealing with limited resources for 

each devise.  Chief amount these limitations is power, as the amount of power a mobile 

devise has limits the amount of processor, amount of memory in a devise, or strength of 

wireless signal.  Without changing the amount of power a devise has or uses, a method 

used to reduce the amount data stored or sent to a mobile devise would conserve the 

resources.  

This research showed that data reduction using SVD compression does not allow 

for an overall reduction in data.  The individual success of the ‘buf’ field for most 

networks demonstrates the potential for SVD compression.  However, SVD compression 

in most of the experiments produced more values than the number used from the original 

data.  Unless the ratio of original data to the number of values in a matrix can be 
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controlled, this method of data reduction is not beneficial for reducing total number of 

data values. 

5.3. Recommendations for Future Research 

Future research along the path of network monitoring data reduction could 

include multiple different aspects.  A potential aspect to maintain from this experiment is 

the matrix model for parsing network traffic data.  The use of data in matrix format is a 

versatile capability.  Once the data is in matrix form, any variety of manipulations and 

calculations can be performed upon it.  Though the method of reduction did not meet the 

parameters set in this experiment.  Further experiments could find this method useful for 

individual tools, if the need for change in individual values were not as strict. 

Future research in this area should incorporate some of the following suggestions. 

The use of a more modern dataset, matrix population by IP address instead of port, and 

the use of a difference matrix compression/reduction method are three of the most 

significant contributions to this field of research.   

As mentioned before, the values and data captured in these datasets were recorded 

in 1996.  Modern datasets could contain more specific data either per packet or per 

connection.  The use of a connection or flow based data measurements instead of packets, 

as mentioned in Chapter 2, could result in more favorable outcomes for the SVD 

compression. 

Changing the matrix population scheme from port based to IP based is another 

modification for future research.  This change would be dependent upon how the 

recipient of the data interprets the data.  Both IP and port could be incorporated to add a 
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further diversification, conversely as shown in this experiment, the SVD compression 

method performs only when the matrix is very sparsely filled relative to the amount of 

original data.  Incorporating both address and port would increase unique values but also 

increase the amount of data generated from SVD compression. 

  Finally this experiment could be conducted examining another matrix reduction 

or compression methods.  This experiment examined only one image compression 

scheme.  There are other compression methods available which would require conversion 

to and from a specified format, such as GIF, JPEG, or PNG.   This does not include 

proprietary image compressions of the mentioned formats.  

Network monitoring traffic compression is a relevant subject for exploration.  

Networks will only grow larger and the amount of data transmitted will continue to 

increase exponentially.  In order to monitor network traffic in an efficient and resourceful 

manner, one must find a way to compress or represent the larger amounts of data. 
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Appendix A. Raw dataset sample 
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Appendix B. Two sample T-test Results 
 

Table 40. H-values for Two sample T-test 
  0.25sec 0.5sec 1.0sec 2.0sec 
Baseline         

Win 1 1 1 1 
Buf 1 1 1 1 

Win Ulen 1 1 1 0 
Network 1     

Win 1 1 1 1 
Buf 1 1 1 1 

Win Ulen 1 1 1 1 
Network 2     

Win 1 1 1 1 
Buf 1 1 1 1 

Win Ulen 1 1 1 1 
Network 3     

Win 1 1 1 1 
Buf 1 1 1 1 

Win Ulen 1 1 1 1 
Network 4     

Win 1 1 1 1 
Buf 1 1 1 1 

Win Ulen 1 1 1 1 
 
Two-sided t-test was conducted with a confidence interval of 95% 
 
Values of 1 are interpreted as the means of the two data sets are not statistically similar 
given mean and variance.   
Values of 0 are interpreted as the means cannot be seen as statistically different given 
mean and variance.  
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